
Holistic FPGA Configuration

CJ Clark, Intellitech Corporation

Abstract What’s complex about FPGA
configuration? You take your bitstream and load
it into a FLASH memory or PROM and you’re
done, right? Not exactly. Encrypt your FPGA
bitstream with AES and the product is protected,
right? Not exactly.
Today’s products require protection not just from
reverse engineering your bitstream, but also from
gray market product builds, trojan bitstreams,
hackers, corrupted in-the-field updates, incorrect
version updates and unauthorized in-the-field
updates (read ‘unpaid for’). This tutorial presents
current techniques used for FPGA configuration,
the disadvantages and then presents a possible
solution. The holistic approach looks not just at
design security but authentication, update safety,
ease-of-use at the CM, ease-of-use during PCB
test and ease-of-use for in-the-field updates. The
approach considers FPGA configuration during
all stages of the product’s life, the design,
prototype, manufacturing, test and field service.

The complexity in designing the ecosystem needed
for multi-FPGA based PCBs continues to increase
however engineering time budgets continue to
decrease. FPGA based PCBs need programmable
DC/DC converters, watch dog timer ICs, power-on
reset ICs, programmable clocks, multiple flash
memories, serial eeproms and FPGA configuration
devices. FPGA based products need security from
hacking and cloning, not just bitstream reverse
engineering. The security solution preferably is in
a product that is plug and play throughout the
lifecycle of the product and not just an application
note. Downstream manufacturing costs and field
service costs can be significantly reduced by
including embedded JTAG based test, especially
embedded test coupled with loading FPGA test
bitstreams. Our position statement is that using an
off the shelf ‘board manager’ can reduce the parts
costs, and reduce many other downstream costs to

the company that may traditionally not be
considered. The SystemBIST IC described in the
presentation allows user-defined FPGA
configuration sequences, DC/DC voltage
margining, user programmable resets, watch-dog
activity, security, embedded PCB self test, built-in
field updating with version control and hacker
security. A unique pre-programmed at the factory
on-chip memory enables SystemBIST to be a
physically un-clone-able feature on a PCB.

FPGA vendors have done a great job in providing
many different ways to program a RAM based
FPGA. There exist a large number of application
notes and ideas on how it can be done. FPGAs
support parallel configuration, serial configuration,
JTAG, FPGA as master, FPGA as slave, direct
NOR flash, direct serial FLASH, CPLD and
FLASH, CPU and FLASH, PROMs, configuration
devices and compact flash. These design choices
have further ramifications in that some methods
will support an encrypted bitstream, some methods
will not. Even differences in the vendor’s pod
matters. Not to pick on Altera, it’s a great
company, but as an example, their FPGA security
key can’t be programmed with their standard USB
pod you may already be using.

Figure 1. Easy to clone products

In some cases logistics and cost have made adding
AES security for bitstreams more challenging,
especially for high volume products or products
with multiple contract manufacturers in multiple
countries. AES security keys are generated by the
FPGA tools and delivered as plain-text SVF
programming files. Cloned products and product
over builds are done by the unscrupulous contract
manufacturer in receipt of the files needed for
manufacturing or in some cases by ex-employees
of those CM’s with access to the gerber board
files, bitstreams and security keys. Security keys
can be programmed in by a trusted third party, but
this has added cost and logistics. If the security
keys are battery backed up keys they must be
programmed after the PCB is assembled. This is
not challenging with a single PCB that you can
program yourself in the lab. However for a global
product with volume production, or regional
manufacturing it can be logistically challenging.

Figure 1.

AES decryption in the FPGA does not

always prevent hackers from programming in a
non-encrypted bitstream. Battery backed key
methods which prevent non-encrypted bitstreams
are easy to defeat by removing the battery or
shorting the battery temporarily until the battery is
dead. Non-volatile key storage that allows non-
encrypted bitstreams to be programmed also
allows non-trusted bitstreams to be programmed
in. Key storage that does not allow non encrypted
bitstreams to be programmed also creates
challenges during production test when FPGAs
need to be configured in different ways to increase

test coverage. Test engineers may not be privy to
the security keys especially when they are working
in a company separate from the one responsible for
the design. Currently only ‘high end’ FPGAs
support AES encrypted bitstreams, another method
must be used for the other FPGAs. Application
notes from Altera and Xilinx show alternative
methods for protecting bitstreams from copying
using an external security device from Maxim.
This method helps but requires either providing
the key to the contract assembler, logistics for pre-
programming the device or programming through
a trusted third party after assembly. After these
efforts and costs are expended, it remains easy to
defeat by a hacker who programs the bitstream
storage with an unauthorized bitstream which
intentionally doesn’t interact with the security
device. The hacker looking to install different
bitstreams, potential look-alike bitstreams which
may be Trojans or for other reasons is not
interested in deciphering your bitstream but to
make use of the platform you have developed for
nefarious purposes. Open, remote in-the-field
updates which send bitstreams over the internet or
use an ad-hoc updating mechanism to re-program
bitstreams into well understood commodity flash
also adds obvious security holes in making your
product hacker resistant.

Figure 2.

Hackers cost the company more than just
embarrassment. Some engineers may believe it is
OK if the product is hacked, as one said, “We’re

still making money, they have to buy the product
first to hack it”. However, many business models
are designed such that the hardware is sold at very
low margins and become the platform that a
company can make higher margins with the
‘consumables’ that go with it. Consumables could
be games, songs, printer cartridges etc. Security
from modifying the software or hardware in the
product has to be better. Even the best of
designers working in very recognizable companies
have created products that a seventeen year old can
hack.
Other types of hacks may circumvent controls on
revenue generating features, enabling use without
paying for them. Freely available software
downloadable from the internet enables average
users to turn on features within a product that they
didn’t pay for, thus creating lost revenue for the
company. Bitstreams stored in commodity
memory are particularly vulnerable as the formats
for programming the memory and the ability to re-
program it with JTAG is not particularly
challenging.

Figure 3. Lost Profits when products are hacked

Other types of hacks can provide access to security
passwords within a product. The company
experiences revenue loss when customers feel
uncomfortable about the security of the product or
customers have a negative experience with the
product when the product is compromised.

Figure 4. Security is compromised

Test is also one of the costs that may not be
completely understood during the design phase of
a product. Companies don’t ship products which
are not tested. A product that is delayed shipping
by a week due to a test engineering problem cost
the company the same amount of money as any
other problem; an extra week of company wide
expenses against the prior product’s profits.

Figure 5. Reduced Functional Test Effort

Embedded functional test development using the
mission mode CPU continues to grow in
complexity. The mission mode function of the
PCB is not well known outside of the originating
company. CM engineers are not trained on
developing the tests or debugging the functional
test failures. It takes in-house resources to develop
the tests, high level engineers which could be put
towards higher value functions if a structured
approach was taken. In order to standardize
development and possibly use third parties for

development, it becomes necessary to separate out
the mission mode firmware from the embedded
test strategy. Mission mode software based test
should start at a higher level, layered on top of
1149.1 structural tests and 1149.1 at-speed tests as
shown in Figure 5. At-speed tests are performed
by downloading test instruments into the FPGAs
such as a Bit-Error-Ratio test for SERDES
channels or Memory BIST for at-speed testing of
DDR2/DDR3 memories. CPU based tests which
are controlled by JTAG/1149.1 called ‘emulation
functional test’ can also be added. Emulation
functional test focuses on at-speed testing between
the CPU and ICs based on datasheets rather than
system functional operation ASICS also contain
JTAG executable BIST functions. The newly
emerging IJTAG (IEEE P1687) standard will
proliferate more on-chip instruments accessible by
JTAG.

Figure 6 At-speed tests controlled by JTAG

Using the mission mode CPU to execute all
possible tests creates the commonly found problem
of having a single data point, not knowing whether
the failure is in the software or the hardware.
Separating out the embedded test and FPGA
configuration infrastructure from the mission
mode allows not only outsourcing of the
development but also a system of checks and
balances when failures in the field are
encountered. A system that can store the failures
in the field for later analysis eliminates the NFF,
No Fault Found, enabling feedback to improve the
product.

Figure 7. SystemBIST IC Block Diagram

A proposed solution is the SystemBIST IC which
provides much of the on-PCB ecosystem needed
for complex FPGA systems. PC based software is
used to develop the ecosystem operation and
strategy, then the binary representation of that
operation can be downloaded to the device.
SystemBIST does not contain a general purpose
CPU, it doesn’t have the delays or infrastructure
associated with software for configuring FPGAs or
running embedded test. SystemBIST provides
parallel configuration of Altera and Xilinx FPGAs
and JTAG based FPGA configuration. The
designer has GUI access to describe how the IC
configures the FPGAs and with what bitstreams to
configure them. Manufacturing tests based on
JTAG can easily be imported and re-used during
manufacturing or in the field. When failures are
found they are stored in non-volatile memory for
later retrieval.
SystemBIST can operate autonomously at power-
up or can accept commands and image updates
over SPI from a CPU. Updates in the field are
done via the SPI and the on-chip version control
checks for valid update images which can contain
bitstreams, updated JTAG tests or possibly new
CPLD designs.
The device supports a built in power-on-reset and
programmable control of the board level resets.

It’s I2C and GPIO can be used for power
sequencing DC/DC converters and programming
adjustable DC/DC converters for voltage
margining. The device supports a user
programmable watch dog for FPGAs or the CPU.
Rather than simply toggling reset the user can
define a sequence of events to perform when the
watch dog kicks such as saving FPGA registers,
re-programming FPGAs, or toggling CPU resets.
SystemBIST contains a unique serial number and
customer code in its one time programmable
memory. Non-authorized parties cannot obtain a
SystemBIST IC with a customer’s code. FPGA
bitstreams and JTAG operations which are in the
binary image are encrypted with two 128 bit keys
and tied to the customer code. Anyone with the
Intellitech software tools cannot generate
compatible bitstreams without being authorized to
do so. This makes SystemBIST a physically
unclonable device. The CPU software can check
and access these variables and others over the SPI
bus.
SystemBIST is compatible with AES encrypted
bitstreams from Xilinx and Altera. Those methods
can still be used. However, SystemBIST takes a
more active role in checking for FPGA bitstream
authenticity. SystemBIST passes tokens via
JTAG or I2C to FPGAs that include a small design
for hashing a unique response preventing non-
authorized bitstreams from being present and
protecting bitstreams from copy/reuse. The user
can program via the software GUI the operation
that occurs in the case of an incorrect response.
This could be something as simple as resetting the
FPGAs and re-programming or more complex.
The period engine is designed to allow for this
periodic checking, it can also be programmed to
perform I2C functions such as voltage margining
or FPGA configuration checks. For instance, the
CRC_CHECK pin of Altera devices could be
periodically scanned via JTAG SAMPLE to check
that an SEU has not occurred, without using
mission mode CPU resources.

The IC has more benefit than just reducing the
parts on the PCB, but also the advantages of the
integration of normally disparate mission mode
functions.

Tutorial attendees can contact the author for access
to the power point slides that go with this position
paper.

Bibliography:

Using the Design Security Feature in Stratix II and
Stratix II GX Devices, Altera Corporation, July
2008.
http://www.altera.com/literature/an/an341.pdf

Trusted Design in FPGAs, Steve Trimberger,
Xilinx, Design Automation Conference, 2007
http://videos.dac.com/44th/papers/1_2.pdf

Authentication of FPGA Bitstreams:
Why and How, Saar Drimer, ARC 2007
http://www.springerlink.com/content/t71pqn4g756
5w806/

A Code-less BIST Processor for Embedded Test
and in-system configuration of Boards and
Systems, CJ Clark, Intellitech Corp, Mike
Ricchetti, ATI Research, ITC 2004,
http://www.intellitech.com/pdf/itc04sb.pdf

Design Security in Stratix III FPGAs, Altera
Corporation
http://www.altera.com/products/devices/stratix-
fpgas/stratix-iii/overview/architecture/st3-design-
security.html

Secure Update Mechanism for Remote Update of
FPGA-Based System, Benoît Badrignans1,2,
Reouven Elbaz3 and Lionel Torres. SEIS 2008,
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel
5/4569831/4577669/04577703.pdf?temp=x

Physical Unclonable Functions for Device
Authentication and Secret Key Generation
G. Edward Suh, Srinivas Devadas
http://videos.dac.com/44th/papers/1_3.pdf

Xilinx® FPGA IFF Copy Protection with 1-Wire
SHA-1 Secure Memories, Maxim,
http://www.maxim-
ic.com/appnotes.cfm/an_pk/3826

An FPGA Design Security Solution Using a Secure
Memory Device, Altera,
http://www.altera.com/literature/wp/wp-01033.pdf

Altera Configuration Handbook
http://www.altera.com/literature/lit-config.jsp

Xilinx Virtex-5 FPGA User Guide
http://www.xilinx.com/support/documentation/use
r_guides/ug190.pdf

Author Bio:

CJ Clark is the President and
CEO of Intellitech
Corporation.

His first job was with
Plantronics/Wilcom in 1978
working in telecom test. He
was the elected chairperson of

the IEEE 1149.1 JTAG working group since 1996.
He has been active in other IEEE working groups
such as IEEE 1149.4, 1149.6, 1532 and 1581. He
has presented at International Test Conference,
TECS (Testing Embedded Cores-Based Systems)
Workshop, the Board Test Workshop, Ottawa Test
Workshop, Design Automation and Test Europe
and VLSI Test Symposium. He is a recurring
program committee member of VTS and guest
lecturer on the IEEE lecture series “Mission-
Critical FPGA-based Embedded Systems.”

CJ serves on the University of New Hampshire
College of Engineering and Physical Science
(CEPS) Advisory Board. He also serves on the
UNH Department of Electrical Engineering
Advisory Board and is a guest lecturer. He is co-
inventor on four US patents and two Canadian
patents, two Taiwanese, two Indian, one European
patent with others pending world-wide.

Organization

Intellitech has developed revolutionary patented
technology for use by electronic product
manufacturers and the semiconductor industry.
Using a unique business model, Intellitech
Corporation develops and licenses advanced
Intellectual Property (IP) for efficient
configuration, debug and test of electronic
products including SoC (System-on-a-Chip), ICs,
PCBs and Systems. The proprietary IP provides a
scalable configuration, debug, and test
infrastructure that enables customers to build high
quality self-testable and in-the-field re-
configurable products using a standard and
consistent architecture from one product
generation to the next. Intellitech's unified
approach to test and configuration enables
customers to provide field adaptable products,
lower their manufacturing test costs, lower their
field support costs, and extend their products'
useful life with field upgrade-able logic.

