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Abstract   What’s complex about FPGA 
configuration?  You take your bitstream and load 
it into a FLASH memory or PROM and you’re 
done, right?   Not exactly.  Encrypt your FPGA 
bitstream with AES and the product is protected, 
right?  Not exactly.    
Today’s products require protection not just from 
reverse engineering your bitstream, but also from 
gray market product builds, trojan bitstreams, 
hackers, corrupted in-the-field updates, incorrect 
version updates and unauthorized in-the-field 
updates (read ‘unpaid for’).  This tutorial presents 
current techniques used for FPGA configuration, 
the disadvantages and then presents a possible 
solution.   The holistic approach looks not just at 
design security but authentication, update safety, 
ease-of-use at the CM, ease-of-use during PCB 
test and ease-of-use for in-the-field updates.  The 
approach considers FPGA configuration during 
all stages of the product’s life, the design, 
prototype, manufacturing, test and field service.   
 
The complexity in designing the ecosystem needed 
for multi-FPGA based PCBs continues to increase 
however engineering time budgets continue to 
decrease.  FPGA based PCBs need programmable 
DC/DC converters, watch dog timer ICs, power-on 
reset ICs, programmable clocks, multiple flash 
memories, serial eeproms and FPGA configuration 
devices.  FPGA based products need security from 
hacking and cloning, not just bitstream reverse 
engineering.  The security solution preferably is in 
a product that is plug and play throughout the 
lifecycle of the product and not just an application 
note.  Downstream manufacturing costs and field 
service costs can be significantly reduced by 
including embedded JTAG based test, especially 
embedded test coupled with loading FPGA test 
bitstreams. Our position statement is that using an 
off the shelf ‘board manager’ can reduce the parts 
costs, and reduce many other downstream costs to 

the company that may traditionally not be 
considered.  The SystemBIST IC described in the 
presentation allows user-defined FPGA 
configuration sequences, DC/DC voltage 
margining, user programmable resets, watch-dog 
activity, security, embedded PCB self test, built-in 
field updating with version control and hacker 
security. A unique pre-programmed at the factory 
on-chip memory enables SystemBIST to be a 
physically un-clone-able feature on a PCB. 
 
FPGA vendors have done a great job in providing 
many different ways to program a RAM based 
FPGA.  There exist a large number of application 
notes and ideas on how it can be done.  FPGAs 
support parallel configuration, serial configuration, 
JTAG, FPGA as master, FPGA as slave, direct 
NOR flash, direct serial FLASH, CPLD and 
FLASH, CPU and FLASH, PROMs, configuration 
devices and compact flash.  These design choices 
have further ramifications in that some methods 
will support an encrypted bitstream, some methods 
will not.  Even differences in the vendor’s pod 
matters.  Not to pick on Altera, it’s a great 
company, but as an example, their FPGA security 
key can’t be programmed with their standard USB 
pod you may already be using.  
 

 
Figure 1.   Easy to clone products 



  
In some cases logistics and cost have made adding 
AES security for bitstreams more challenging, 
especially for high volume products or products 
with multiple contract manufacturers in multiple 
countries.  AES security keys are generated by the 
FPGA tools and delivered as plain-text SVF 
programming files.    Cloned products and product 
over builds are done by the unscrupulous contract 
manufacturer in receipt of the files needed for 
manufacturing or in some cases by ex-employees 
of those CM’s with access to the gerber board 
files, bitstreams and security keys.  Security keys 
can be programmed in by a trusted third party, but 
this has added cost and logistics.  If the security 
keys are battery backed up keys they must be 
programmed after the PCB is assembled. This is 
not challenging with a single PCB that you can 
program yourself in the lab.  However for a global 
product with volume production, or regional 
manufacturing it can be logistically challenging.  
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AES decryption in the FPGA does not 

always prevent hackers from programming in a 
non-encrypted bitstream.  Battery backed key 
methods which prevent non-encrypted bitstreams 
are easy to defeat by removing the battery or 
shorting the battery temporarily until the battery is 
dead. Non-volatile key storage that allows non-
encrypted bitstreams to be programmed also 
allows non-trusted bitstreams to be programmed 
in.  Key storage that does not allow non encrypted 
bitstreams to be programmed also creates 
challenges during production test when FPGAs 
need to be configured in different ways to increase 

test coverage.  Test engineers may not be privy to 
the security keys especially when they are working 
in a company separate from the one responsible for 
the design.   Currently only ‘high end’ FPGAs 
support AES encrypted bitstreams, another method 
must be used for the other FPGAs.  Application 
notes from Altera and Xilinx show alternative 
methods for protecting bitstreams from copying 
using an external security device from Maxim.  
This method helps but requires either providing 
the key to the contract assembler, logistics for pre-
programming the device or programming through 
a trusted third party after assembly.  After these 
efforts and costs are expended, it remains easy to 
defeat by a hacker who programs the bitstream 
storage with an unauthorized bitstream which 
intentionally doesn’t interact with the security 
device.  The hacker looking to install different 
bitstreams, potential look-alike bitstreams which 
may be Trojans or for other reasons is not 
interested in deciphering your bitstream but to 
make use of the platform you have developed for 
nefarious purposes.  Open, remote in-the-field 
updates which send bitstreams over the internet or 
use an ad-hoc updating mechanism to re-program 
bitstreams into well understood commodity flash 
also adds obvious security holes in making your 
product hacker resistant. 

 
Figure 2.   

 
Hackers cost the company more than just 
embarrassment.   Some engineers may believe it is 
OK if the product is hacked, as one said, “We’re 



still making money, they have to buy the product 
first to hack it”.  However, many business models 
are designed such that the hardware is sold at very 
low margins and become the platform that a 
company can make higher margins with the 
‘consumables’ that go with it.  Consumables could 
be games, songs, printer cartridges etc.  Security 
from modifying the software or hardware in the 
product has to be better.  Even the best of 
designers working in very recognizable companies 
have created products that a seventeen year old can 
hack.   
Other types of hacks may circumvent controls on 
revenue generating features, enabling use without 
paying for them.  Freely available software 
downloadable from the internet enables average 
users to turn on features within a product that they 
didn’t pay for, thus creating lost revenue for the 
company.  Bitstreams stored in commodity 
memory are particularly vulnerable as the formats 
for programming the memory and the ability to re-
program it with JTAG is not particularly 
challenging. 

 

 
Figure 3.  Lost Profits when products are hacked 

 
Other types of hacks can provide access to security 
passwords within a product.  The company 
experiences revenue loss when customers feel 
uncomfortable about the security of the product or 
customers have a negative experience with the 
product when the product is compromised.  

 
 

Figure 4.   Security is compromised 
 
Test is also one of the costs that may not be 
completely understood during the design phase of 
a product.  Companies don’t ship products which 
are not tested. A product that is delayed shipping 
by a week due to a test engineering problem cost 
the company the same amount of money as any 
other problem; an extra week of company wide 
expenses against the prior product’s profits.  
 
 

 
Figure 5.  Reduced Functional Test Effort 

 
Embedded functional test development using the 
mission mode CPU continues to grow in 
complexity.  The mission mode function of the 
PCB is not well known outside of the originating 
company. CM engineers are not trained on 
developing the tests or debugging the functional 
test failures.  It takes in-house resources to develop 
the tests, high level engineers which could be put 
towards higher value functions if a structured 
approach was taken.   In order to standardize 
development and possibly use third parties for 



development, it becomes necessary to separate out 
the mission mode firmware from the embedded 
test strategy.   Mission mode software based test 
should start at a higher level, layered on top of 
1149.1 structural tests and 1149.1 at-speed tests as 
shown in Figure 5.    At-speed tests are performed 
by downloading test instruments into the FPGAs 
such as a Bit-Error-Ratio test for SERDES 
channels or Memory BIST for at-speed testing of 
DDR2/DDR3 memories. CPU based tests which 
are controlled by JTAG/1149.1 called ‘emulation 
functional test’ can also be added.  Emulation 
functional test focuses on at-speed testing between 
the CPU and ICs based on datasheets rather than 
system functional operation     ASICS also contain 
JTAG executable BIST functions.  The newly 
emerging IJTAG (IEEE P1687) standard will 
proliferate more on-chip instruments accessible by 
JTAG. 
 

 
Figure 6  At-speed tests controlled by JTAG 

 
Using the mission mode CPU to execute all 
possible tests creates the commonly found problem 
of having a single data point, not knowing whether 
the failure is in the software or the hardware.  
Separating out the embedded test and FPGA 
configuration infrastructure from the mission 
mode allows not only outsourcing of the 
development but also a system of checks and 
balances when failures in the field are 
encountered.   A system that can store the failures 
in the field for later analysis eliminates the NFF, 
No Fault Found, enabling feedback to improve the 
product.       

 

 
Figure 7.  SystemBIST IC Block Diagram 

 
A proposed solution is the SystemBIST IC which 
provides much of the on-PCB ecosystem needed 
for complex FPGA systems. PC based software is 
used to develop the ecosystem operation and 
strategy, then the binary representation of that 
operation can be downloaded to the device. 
SystemBIST does not contain a general purpose 
CPU, it doesn’t have the delays or infrastructure 
associated with software for configuring FPGAs or 
running embedded test. SystemBIST provides 
parallel configuration of Altera and Xilinx FPGAs 
and JTAG based FPGA configuration.    The 
designer has GUI access to describe how the IC 
configures the FPGAs and with what bitstreams to 
configure them.  Manufacturing tests based on 
JTAG can easily be imported and re-used during 
manufacturing or in the field. When failures are 
found they are stored in non-volatile memory for 
later retrieval.   
SystemBIST can operate autonomously at power-
up or can accept commands and image updates 
over SPI from a CPU.  Updates in the field are 
done via the SPI and the on-chip version control 
checks for valid update images which can contain 
bitstreams, updated JTAG tests or possibly new 
CPLD designs. 
The device supports a built in power-on-reset and 
programmable control of the board level resets.  



It’s I2C and GPIO can be used for power 
sequencing DC/DC converters and programming 
adjustable DC/DC converters for voltage 
margining.  The device supports a user 
programmable watch dog for FPGAs or the CPU.  
Rather than simply toggling reset the user can 
define a sequence of events to perform when the 
watch dog kicks such as saving FPGA registers, 
re-programming FPGAs, or toggling CPU resets.  
SystemBIST contains a unique serial number and 
customer code in its one time programmable 
memory.  Non-authorized parties cannot obtain a 
SystemBIST IC with a customer’s code.  FPGA 
bitstreams and JTAG operations which are in the 
binary image are encrypted with two 128 bit keys 
and tied to the customer code.  Anyone with the 
Intellitech software tools cannot generate 
compatible bitstreams without being authorized to 
do so.  This makes SystemBIST a physically 
unclonable device.  The CPU software can check 
and access these variables and others over the SPI 
bus. 
SystemBIST is compatible with AES encrypted 
bitstreams from Xilinx and Altera.  Those methods 
can still be used.   However, SystemBIST takes a 
more active role in checking for FPGA bitstream 
authenticity.   SystemBIST passes tokens via 
JTAG or I2C to FPGAs that include a small design 
for hashing a unique response preventing non-
authorized bitstreams from being present and 
protecting bitstreams from copy/reuse.   The user 
can program via the software GUI the operation 
that occurs in the case of an incorrect response.  
This could be something as simple as resetting the 
FPGAs and re-programming or more complex. 
The period engine is designed to allow for this 
periodic checking, it can also be programmed to 
perform I2C functions such as voltage margining 
or FPGA configuration checks.  For instance, the 
CRC_CHECK pin of Altera devices could be 
periodically scanned via JTAG SAMPLE to check 
that an SEU has not occurred, without using 
mission mode CPU resources. 
 
The IC has more benefit than just reducing the 
parts on the PCB, but also the advantages of the 
integration of normally disparate mission mode 
functions.   

 
Tutorial attendees can contact the author for access 
to the power point slides that go with this position 
paper. 
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Intellitech has developed revolutionary patented 
technology for use by electronic product 
manufacturers and the semiconductor industry. 
Using a unique business model, Intellitech 
Corporation develops and licenses advanced 
Intellectual Property (IP) for efficient 
configuration, debug and test of electronic 
products including SoC (System-on-a-Chip), ICs, 
PCBs and Systems. The proprietary IP provides a 
scalable configuration, debug, and test 
infrastructure that enables customers to build high 
quality self-testable and in-the-field re-
configurable products using a standard and 
consistent architecture from one product 
generation to the next. Intellitech's unified 
approach to test and configuration enables 
customers to provide field adaptable products, 
lower their manufacturing test costs, lower their 
field support costs, and extend their products' 
useful life with field upgrade-able logic. 


